Source code for nvector.objects

"""
Object oriented interface to geodesic functions
===============================================

"""
# pylint: disable=invalid-name
from __future__ import division, print_function
from functools import partial
import warnings
import numpy as np
from numpy.linalg import norm
from geographiclib.geodesic import Geodesic as _Geodesic
from nvector import _examples, license as _license
from nvector._common import test_docstrings, use_docstring_from, use_docstring, _make_summary
from nvector.rotation import zyx2R, n_E_and_wa2R_EL, n_E2R_EN
from nvector.util import unit, mdot, get_ellipsoid, rad, deg, isclose, allclose, array_to_list_dict
from nvector.core import (lat_lon2n_E,
                          n_E2lat_lon,
                          n_EB_E2p_EB_E,
                          p_EB_E2n_EB_E,
                          closest_point_on_great_circle,
                          great_circle_distance,
                          euclidean_distance,
                          cross_track_distance,
                          intersect,
                          n_EA_E_distance_and_azimuth2n_EB_E,
                          E_rotation,
                          on_great_circle_path,
                          _interp_vectors)


__all__ = ['delta_E', 'delta_L', 'delta_N',
           'diff_positions',
           'FrameB', 'FrameE', 'FrameN', 'FrameL',
           'GeoPath',
           'GeoPoint',
           'ECEFvector',
           'Nvector',
           'Pvector']


[docs]@use_docstring(_examples.get_examples_no_header([1])) def delta_E(point_a, point_b): """ Returns cartesian delta vector from positions a to b decomposed in E. Parameters ---------- point_a, point_b: Nvector, GeoPoint or ECEFvector objects position a and b, decomposed in E. Returns ------- p_ab_E: ECEFvector Cartesian position vector(s) from a to b, decomposed in E. Notes ----- The calculation is exact, taking the ellipsity of the Earth into account. It is also non-singular as both n-vector and p-vector are non-singular (except for the center of the Earth). Examples -------- {super} See also -------- n_EA_E_and_p_AB_E2n_EB_E, p_EB_E2n_EB_E, n_EB_E2p_EB_E. """ # Function 1. in Section 5.4 in Gade (2010): p_EA_E = point_a.to_ecef_vector() p_EB_E = point_b.to_ecef_vector() p_AB_E = p_EB_E - p_EA_E return p_AB_E
diff_positions = np.deprecate(delta_E, old_name='diff_positions', new_name='delta_E') def _base_angle(angle_rad): r"""Returns angle so it is between $-\pi$ and $\pi$""" return np.mod(angle_rad + np.pi, 2*np.pi) - np.pi
[docs]def delta_N(point_a, point_b): """Returns cartesian delta vector from positions a to b decomposed in N. Parameters ---------- point_a, point_b: Nvector, GeoPoint or ECEFvector objects position a and b, decomposed in E. See also -------- delta_E, delta_L """ # p_ab_E = delta_E(point_a, point_b) # p_ab_N = p_ab_E.change_frame(....) return delta_E(point_a, point_b).change_frame(FrameN(point_a))
def _delta(self, other): """Returns cartesian delta vector from positions a to b decomposed in N.""" return delta_N(self, other)
[docs]def delta_L(point_a, point_b, wander_azimuth=0): """Returns cartesian delta vector from positions a to b decomposed in L. Parameters ---------- point_a, point_b: Nvector, GeoPoint or ECEFvector objects position a and b, decomposed in E. wander_azimuth: real scalar Angle [rad] between the x-axis of L and the north direction. See also -------- delta_E, delta_N """ local_frame = FrameL(point_a, wander_azimuth=wander_azimuth) # p_ab_E = delta_E(point_a, point_b) # p_ab_L = p_ab_E.change_frame(....) return delta_E(point_a, point_b).change_frame(local_frame)
class _Common(object): _NAMES = () def __repr__(self): cname = self.__class__.__name__ fmt = ', ' names = self._NAMES if self._NAMES else list(self.__dict__) dict_params = array_to_list_dict(self.__dict__.copy()) params = fmt.join(['{}={!r}'.format(name, dict_params[name]) for name in names if not name.startswith('_')]) return '{}({})'.format(cname, params) def __eq__(self, other): try: return self is other or self._is_equal_to(other, rtol=1e-12, atol=1e-14) except AttributeError: return False def __ne__(self, other): return not self.__eq__(other)
[docs]class GeoPoint(_Common): """ Geographical position given as latitude, longitude, depth in frame E. Parameters ---------- latitude, longitude: real scalars or vectors of length n. Geodetic latitude and longitude given in [rad or deg] z: real scalar or vector of length n. Depth(s) [m] relative to the ellipsoid (depth = -height) frame: FrameE object reference ellipsoid. The default ellipsoid model used is WGS84, but other ellipsoids/spheres might be specified. degrees: bool True if input are given in degrees otherwise radians are assumed. Examples -------- Solve geodesic problems. The following illustrates its use >>> import nvector as nv >>> wgs84 = nv.FrameE(name='WGS84') >>> point_a = wgs84.GeoPoint(-41.32, 174.81, degrees=True) >>> point_b = wgs84.GeoPoint(40.96, -5.50, degrees=True) >>> print(point_a) GeoPoint(latitude=-0.721170046924057, longitude=3.0510100654112877, z=0, frame=FrameE(a=6378137.0, f=0.0033528106647474805, name='WGS84', axes='e')) The geodesic inverse problem >>> s12, az1, az2 = point_a.distance_and_azimuth(point_b, degrees=True) >>> 's12 = {:5.2f}, az1 = {:5.2f}, az2 = {:5.2f}'.format(s12, az1, az2) 's12 = 19959679.27, az1 = 161.07, az2 = 18.83' The geodesic direct problem >>> point_a = wgs84.GeoPoint(40.6, -73.8, degrees=True) >>> az1, distance = 45, 10000e3 >>> point_b, az2 = point_a.displace(distance, az1, degrees=True) >>> lat2, lon2 = point_b.latitude_deg, point_b.longitude_deg >>> msg = 'lat2 = {:5.2f}, lon2 = {:5.2f}, az2 = {:5.2f}' >>> msg.format(lat2, lon2, az2) 'lat2 = 32.64, lon2 = 49.01, az2 = 140.37' """ _NAMES = ('latitude', 'longitude', 'z', 'frame')
[docs] def __init__(self, latitude, longitude, z=0, frame=None, degrees=False): if degrees: latitude, longitude = rad(latitude, longitude) self.latitude, self.longitude, self.z = np.broadcast_arrays(latitude, longitude, z) self.frame = _default_frame(frame)
def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): def diff(angle1, angle2): pi2 = 2 * np.pi delta = (angle1 - angle2) % pi2 return np.where(delta > np.pi, pi2 - delta, delta) options = dict(rtol=rtol, atol=atol) delta_lat = diff(self.latitude, other.latitude) delta_lon = diff(self.longitude, other.longitude) return (allclose(delta_lat, 0, **options) and allclose(delta_lon, 0, **options) and allclose(self.z, other.z, **options) and self.frame == other.frame) @property def latlon_deg(self): """(latitude_deg, longitude_deg, z) tuple, angles are in degree.""" return self.latitude_deg, self.longitude_deg, self.z @property def latlon(self): """(latitude, longitude, z) tuple, angles are in radian.""" return self.latitude, self.longitude, self.z @property def latitude_deg(self): """latitude in degrees.""" return deg(self.latitude) @property def longitude_deg(self): """longitude in degrees.""" return deg(self.longitude) @property def scalar(self): """True if the position is a scalar point""" return (np.ndim(self.z) == 0 and np.size(self.latitude) == 1 and np.size(self.longitude) == 1) def to_ecef_vector(self): """ Returns position as ECEFvector object. See also -------- ECEFvector """ return self.to_nvector().to_ecef_vector() def to_geo_point(self): """ Returns position as GeoPoint object. See also -------- GeoPoint """ return self def to_nvector(self): """ Returns position as Nvector object. See also -------- Nvector """ latitude, longitude = self.latitude, self.longitude n_vector = lat_lon2n_E(latitude, longitude, self.frame.R_Ee) return Nvector(n_vector, self.z, self.frame) delta_to = _delta def _displace_great_circle(self, distance, azimuth, degrees): """ Returns the great circle solution using the nvector method. """ n_a = self.to_nvector() e_a = n_a.to_ecef_vector() radius = e_a.length distance_rad = distance / radius azimuth_rad = azimuth if not degrees else rad(azimuth) normal_b = n_EA_E_distance_and_azimuth2n_EB_E(n_a.normal, distance_rad, azimuth_rad) point_b = Nvector(normal_b, self.z, self.frame).to_geo_point() azimuth_b = _base_angle(delta_N(point_b, e_a).azimuth - np.pi) if degrees: return point_b, deg(azimuth_b) return point_b, azimuth_b def displace(self, distance, azimuth, long_unroll=False, degrees=False, method='ellipsoid'): """ Returns position b computed from current position, distance and azimuth. Parameters ---------- distance: real scalar ellipsoidal or great circle distance [m] between position A and B. azimuth: azimuth [rad or deg] of line at position A. long_unroll: bool Controls the treatment of longitude when method=='ellipsoid'. See distance_and_azimuth method for details. degrees: bool azimuths are given in degrees if True otherwise in radians. method: 'greatcircle' or 'ellipsoid' defining the path where to find position b. Returns ------- point_b: GeoPoint object latitude and longitude of position B. azimuth_b azimuth [rad or deg] of line at position B. """ if method[:1] == 'e': # exact solution return self._displace_ellipsoid(distance, azimuth, long_unroll, degrees) return self._displace_great_circle(distance, azimuth, degrees) def _displace_ellipsoid(self, distance, azimuth, long_unroll=False, degrees=False): """ Returns the exact ellipsoidal solution using the method of Karney. """ frame = self.frame z = self.z if not degrees: azimuth = deg(azimuth) lat_a, lon_a = self.latitude_deg, self.longitude_deg lat_b, lon_b, azimuth_b = frame.direct(lat_a, lon_a, azimuth, distance, z=z, long_unroll=long_unroll, degrees=True) point_b = frame.GeoPoint(latitude=lat_b, longitude=lon_b, z=z, degrees=True) if not degrees: return point_b, rad(azimuth_b) return point_b, azimuth_b def distance_and_azimuth(self, point, long_unroll=False, degrees=False, method='ellipsoid'): """ Returns ellipsoidal distance between positions as well as the direction. Parameters ---------- point: GeoPoint object Latitude and longitude of position b. long_unroll: bool Controls the treatment of longitude. If it is False then the lon_a and lon_b are both reduced to the range [-180, 180). If it is True, then lon_a is as given in the function call and (lon_b - lon_a) determines how many times and in what sense the geodesic has encircled the ellipsoid. degrees: bool azimuths are returned in degrees if True otherwise in radians. method: 'greatcircle' or 'ellipsoid' defining the path distance. Returns ------- s_ab: real scalar or vector of length n. ellipsoidal distance [m] between position a and b at their average height. azimuth_a, azimuth_b: real scalars or vectors of length n. direction [rad or deg] of line at position a and b relative to North, respectively. Notes ----- Restriction on the parameters: * Latitudes must lie between -90 and 90 degrees. * Latitudes outside this range will be set to NaNs. * The flattening f should be between -1/50 and 1/50 inn order to retain full accuracy. References ---------- `C. F. F. Karney, Algorithms for geodesics, J. Geodesy 87(1), 43-55 (2013) <https://rdcu.be/cccgm>`_ `geographiclib <https://pypi.python.org/pypi/geographiclib>`_ """ _check_frames(self, point) if method[0] == 'e': return self._distance_and_azimuth_ellipsoid(point, long_unroll, degrees) return self._distance_and_azimuth_greatcircle(point, degrees) def _distance_and_azimuth_greatcircle(self, point, degrees): n_a = self.to_nvector() n_b = point.to_nvector() e_a = n_a.to_ecef_vector() e_b = n_b.to_ecef_vector() radius = 0.5 * (e_a.length + e_b.length) distance = great_circle_distance(n_a.normal, n_b.normal, radius) azimuth_a = delta_N(e_a, e_b).azimuth azimuth_b = _base_angle(delta_N(e_b, e_a).azimuth - np.pi) if degrees: azimuth_a, azimuth_b = deg(azimuth_a), deg(azimuth_b) if np.ndim(radius) == 0: return distance[0], azimuth_a, azimuth_b # scalar track distance return distance, azimuth_a, azimuth_b def _distance_and_azimuth_ellipsoid(self, point, long_unroll, degrees): gpoint = point.to_geo_point() lat_a, lon_a = self.latitude, self.longitude lat_b, lon_b = gpoint.latitude, gpoint.longitude z = 0.5 * (self.z + gpoint.z) # Average depth if degrees: lat_a, lon_a, lat_b, lon_b = deg(lat_a, lon_a, lat_b, lon_b) return self.frame.inverse(lat_a, lon_a, lat_b, lon_b, z, long_unroll, degrees)
[docs]class Nvector(_Common): """ Geographical position given as n-vector and depth in frame E Parameters ---------- normal: 3 x n array n-vector(s) [no unit] decomposed in E. z: real scalar or vector of length n. Depth(s) [m] relative to the ellipsoid (depth = -height) frame: FrameE object reference ellipsoid. The default ellipsoid model used is WGS84, but other ellipsoids/spheres might be specified. Notes ----- The position of B (typically body) relative to E (typically Earth) is given into this function as n-vector, n_EB_E and a depth, z relative to the ellipsiod. Examples -------- >>> import nvector as nv >>> wgs84 = nv.FrameE(name='WGS84') >>> point_a = wgs84.GeoPoint(-41.32, 174.81, degrees=True) >>> point_b = wgs84.GeoPoint(40.96, -5.50, degrees=True) >>> nv_a = point_a.to_nvector() >>> print(nv_a) Nvector(normal=[[-0.7479546170813224], [0.06793758070955484], [-0.6602638683996461]], z=0, frame=FrameE(a=6378137.0, f=0.0033528106647474805, name='WGS84', axes='e')) See also -------- GeoPoint, ECEFvector, Pvector """ _NAMES = ('normal', 'z', 'frame')
[docs] def __init__(self, normal, z=0, frame=None): self.normal = normal self.z = z self.frame = _default_frame(frame)
def interpolate(self, t_i, t, kind='linear', window_length=0, polyorder=2, mode='interp', cval=0.0): """ Returns interpolated values from nvector data. Parameters ---------- t_i: real vector length m Vector of interpolation times. t: real vector length n Vector of times. kind: str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic' where 'zero', 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of zeroth, first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. window_length: positive odd integer The length of the Savitzky-Golay filter window (i.e., the number of coefficients). Default window_length=0, i.e. no smoothing. polyorder: int The order of the polynomial used to fit the samples. polyorder must be less than window_length. mode: 'mirror', 'constant', 'nearest', 'wrap' or 'interp'. Determines the type of extension to use for the padded signal to which the filter is applied. When mode is 'constant', the padding value is given by cval. When the 'interp' mode is selected (the default), no extension is used. Instead, a degree polyorder polynomial is fit to the last window_length values of the edges, and this polynomial is used to evaluate the last window_length // 2 output values. cval: scalar, optional Value to fill past the edges of the input if mode is 'constant'. Default is 0.0. Returns ------- result: Nvector objest Interpolated n-vector(s) [no unit] decomposed in E. Notes ----- The result for spherical Earth is returned. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import nvector as nv >>> lat = np.arange(0, 10) >>> lon = nv.deg(np.sin(nv.rad(np.linspace(-90, 70, 10)))) >>> nvectors = nv.GeoPoint(lat, lon, degrees=True).to_nvector() >>> t = np.arange(10) >>> t_i = np.linspace(0, t[-1], 100) >>> nvectors_i = nvectors.interpolate(t_i, t, kind='cubic') >>> lati, loni, zi = nvectors_i.to_geo_point().latlon_deg >>> h = plt.plot(lon, lat, 'o', loni, lati, '-') >>> plt.show() # doctest: +SKIP >>> plt.close() """ vectors = np.vstack((self.normal, self.z)) vectors_i = _interp_vectors(t_i, t, vectors, kind, window_length, polyorder, mode, cval) normal = unit(vectors_i[:3], norm_zero_vector=np.nan) return Nvector(normal, z=vectors_i[3], frame=self.frame) def to_ecef_vector(self): """ Returns position as ECEFvector object. See also -------- ECEFvector """ frame = self.frame a, f, R_Ee = frame.a, frame.f, frame.R_Ee pvector = n_EB_E2p_EB_E(self.normal, depth=self.z, a=a, f=f, R_Ee=R_Ee) scalar = self.scalar return ECEFvector(pvector, self.frame, scalar=scalar) @property def scalar(self): """True if the position is a scalar point""" return np.ndim(self.z) == 0 and self.normal.shape[1] == 1 def to_geo_point(self): """ Returns position as GeoPoint object. See also -------- GeoPoint """ latitude, longitude = n_E2lat_lon(self.normal, R_Ee=self.frame.R_Ee) if self.scalar: return GeoPoint(latitude[0], longitude[0], self.z, self.frame) # Scalar geo_point return GeoPoint(latitude, longitude, self.z, self.frame) def to_nvector(self): """ Returns position as Nvector object. See also -------- Nvector """ return self delta_to = _delta def unit(self): """Normalizes self to unit vector(s)""" self.normal = unit(self.normal) def mean(self): """ Returns mean position of the n-vectors. """ average_nvector = unit(np.sum(self.normal, axis=1).reshape((3, 1))) return self.frame.Nvector(average_nvector, z=np.mean(self.z)) mean_horizontal_position = np.deprecate(mean, old_name='mean_horizontal_position', new_name='mean') def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): options = dict(rtol=rtol, atol=atol) return (allclose(self.normal, other.normal, **options) and allclose(self.z, other.z, **options) and self.frame == other.frame) def __add__(self, other): _check_frames(self, other) return self.frame.Nvector(self.normal + other.normal, self.z + other.z) def __sub__(self, other): _check_frames(self, other) return self.frame.Nvector(self.normal - other.normal, self.z - other.z) def __neg__(self): return self.frame.Nvector(-self.normal, -self.z) def __mul__(self, scalar): """elementwise multiplication""" if not isinstance(scalar, Nvector): return self.frame.Nvector(self.normal * scalar, self.z * scalar) return NotImplemented # 'Only scalar multiplication is implemented' def __div__(self, scalar): """elementwise division""" if not isinstance(scalar, Nvector): return self.frame.Nvector(self.normal / scalar, self.z / scalar) return NotImplemented # 'Only scalar division is implemented' __truediv__ = __div__ __radd__ = __add__ __rmul__ = __mul__
[docs]class Pvector(_Common): """ Geographical position given as cartesian position vector in a frame. """ _NAMES = ('pvector', 'frame', 'scalar')
[docs] def __init__(self, pvector, frame, scalar=None): if scalar is None: scalar = np.shape(pvector)[1] == 1 self.pvector = pvector self.frame = frame self.scalar = scalar
def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): options = dict(rtol=rtol, atol=atol) return (allclose(self.pvector, other.pvector, **options) and self.frame == other.frame) def to_ecef_vector(self): """ Returns position as ECEFvector object. See also -------- ECEFvector """ n_frame = self.frame p_AB_N = self.pvector # alternatively: np.dot(n_frame.R_EN, p_AB_N) p_AB_E = mdot(n_frame.R_EN, p_AB_N[:, None, ...]).reshape(3, -1) return ECEFvector(p_AB_E, frame=n_frame.nvector.frame, scalar=self.scalar) def to_nvector(self): """ Returns position as Nvector object. See also -------- Nvector """ return self.to_ecef_vector().to_nvector() def to_geo_point(self): """ Returns position as GeoPoint object. See also -------- GeoPoint """ return self.to_ecef_vector().to_geo_point() delta_to = _delta @property def length(self): "Length of the pvector." lengths = norm(self.pvector, axis=0) if self.scalar: return lengths[0] return lengths @property def azimuth_deg(self): """Azimuth in degree clockwise relative to the x-axis.""" return deg(self.azimuth) @property def azimuth(self): """Azimuth in radian clockwise relative to the x-axis.""" p_AB_N = self.pvector if self.scalar: return np.arctan2(p_AB_N[1], p_AB_N[0])[0] return np.arctan2(p_AB_N[1], p_AB_N[0]) @property def elevation_deg(self): """Elevation in degree relative to the xy-plane. (Positive downwards in a NED frame)""" return deg(self.elevation) @property def elevation(self): """Elevation in radian relative to the xy-plane. (Positive downwards in a NED frame)""" z = self.pvector[2] if self.scalar: return np.arcsin(z / self.length)[0] return np.arcsin(z / self.length)
[docs]@use_docstring(_examples.get_examples_no_header([3, 4])) class ECEFvector(Pvector): """ Geographical position given as cartesian position vector in frame E Parameters ---------- pvector: 3 x n array Cartesian position vector(s) [m] from E to B, decomposed in E. frame: FrameE object reference ellipsoid. The default ellipsoid model used is WGS84, but other ellipsoids/spheres might be specified. Notes ----- The position of B (typically body) relative to E (typically Earth) is given into this function as p-vector, p_EB_E relative to the center of the frame. Examples -------- {super} See also -------- GeoPoint, ECEFvector, Pvector """
[docs] def __init__(self, pvector, frame=None, scalar=None): super(ECEFvector, self).__init__(pvector, _default_frame(frame), scalar)
def change_frame(self, frame): """ Converts to Cartesian position vector in another frame Parameters ---------- frame: FrameB, FrameN or frameL object local frame M used to convert p_AB_E (position vector from A to B, decomposed in E) to a cartesian vector p_AB_M decomposed in M. Returns ------- p_AB_M: Pvector object position vector from A to B, decomposed in frame M. See also -------- n_EB_E2p_EB_E, n_EA_E_and_p_AB_E2n_EB_E, n_EA_E_and_n_EB_E2p_AB_E. """ _check_frames(self, frame.nvector) p_AB_E = self.pvector p_AB_N = mdot(np.swapaxes(frame.R_EN, 1, 0), p_AB_E[:, None, ...]) return Pvector(p_AB_N.reshape(3, -1), frame=frame, scalar=self.scalar) def to_ecef_vector(self): return self def to_geo_point(self): """ Returns position as GeoPoint object. See also -------- GeoPoint """ return self.to_nvector().to_geo_point() def to_nvector(self): """ Returns position as Nvector object. See also -------- Nvector """ frame = self.frame p_EB_E = self.pvector R_Ee = frame.R_Ee n_EB_E, depth = p_EB_E2n_EB_E(p_EB_E, a=frame.a, f=frame.f, R_Ee=R_Ee) if self.scalar: return Nvector(n_EB_E, z=depth[0], frame=frame) return Nvector(n_EB_E, z=depth, frame=frame) delta_to = _delta def __add__(self, other): _check_frames(self, other) scalar = self.scalar and other.scalar return ECEFvector(self.pvector + other.pvector, self.frame, scalar) def __sub__(self, other): _check_frames(self, other) scalar = self.scalar and other.scalar return ECEFvector(self.pvector - other.pvector, self.frame, scalar) def __neg__(self): return ECEFvector(-self.pvector, self.frame, self.scalar)
[docs]@use_docstring(_examples.get_examples_no_header([5, 6, 9, 10])) class GeoPath(object): """ Geographical path between two positions in Frame E Parameters ---------- point_a, point_b: Nvector, GeoPoint or ECEFvector objects The path is defined by the line between position A and B, decomposed in E. Notes ----- Please note that either position A or B or both might be a vector of points. In this case the GeoPath instance represents all the paths between the positions of A and the corresponding positions of B. Examples -------- {super} """
[docs] def __init__(self, point_a, point_b): self.point_a = point_a self.point_b = point_b
@property def positionA(self): """positionA is deprecated, use point_a instead!""" # @ReservedAssignment warnings.warn("positionA is deprecated, use point_a instead!", category=DeprecationWarning, stacklevel=2) return self.point_a @property def positionB(self): """positionB is deprecated, use point_b instead!""" # @ReservedAssignment warnings.warn("positionB is deprecated, use point_b instead!", category=DeprecationWarning, stacklevel=2) return self.point_b def nvectors(self): """ Returns point_a and point_b as n-vectors """ return self.point_a.to_nvector(), self.point_b.to_nvector() def geo_points(self): """ Returns point_a and point_b as geo-points """ return self.point_a.to_geo_point(), self.point_b.to_geo_point() def ecef_vectors(self): """ Returns point_a and point_b as ECEF-vectors """ return self.point_a.to_ecef_vector(), self.point_b.to_ecef_vector() def nvector_normals(self): """Returns nvector normals for position a and b""" nvector_a, nvector_b = self.nvectors() return nvector_a.normal, nvector_b.normal def _get_average_radius(self): p_E1_E, p_E2_E = self.ecef_vectors() radius = (p_E1_E.length + p_E2_E.length) / 2 return radius def cross_track_distance(self, point, method='greatcircle', radius=None): """ Returns cross track distance from path to point. Parameters ---------- point: GeoPoint, Nvector or ECEFvector object position to measure the cross track distance to. radius: real scalar radius of sphere in [m]. Default is the average height of points A and B. method: 'greatcircle' or 'euclidean' defining distance calculated. Returns ------- distance: real scalar or vector distance in [m] Notes ----- The result for spherical Earth is returned. """ if radius is None: radius = self._get_average_radius() path = self.nvector_normals() n_c = point.to_nvector().normal distance = cross_track_distance(path, n_c, method=method, radius=radius) if np.ndim(radius) == 0 and distance.size == 1: return distance[0] # scalar cross track distance return distance def track_distance(self, method='greatcircle', radius=None): """ Returns the path distance computed at the average height. Parameters ---------- method: 'greatcircle', 'euclidean' or 'ellipsoidal' defining distance calculated. radius: real scalar radius of sphere. Default is the average height of points A and B """ if method[:2] in {'ex', 'el'}: # exact or ellipsoidal point_a, point_b = self.geo_points() s_ab, _angle1, _angle2 = point_a.distance_and_azimuth(point_b) return s_ab if radius is None: radius = self._get_average_radius() normal_a, normal_b = self.nvector_normals() distance_fun = euclidean_distance if method[:2] == "eu" else great_circle_distance distance = distance_fun(normal_a, normal_b, radius) if np.ndim(radius) == 0: return distance[0] # scalar track distance return distance def intersect(self, path): """ Returns the intersection(s) between the great circles of the two paths Parameters ---------- path: GeoPath object path to intersect Returns ------- point: GeoPoint point of intersection between paths Notes ----- The result for spherical Earth is returned at the average height. """ frame = self.point_a.frame point_a1, point_a2 = self.nvectors() point_b1, point_b2 = path.nvectors() path_a = (point_a1.normal, point_a2.normal) # self.nvector_normals() path_b = (point_b1.normal, point_b2.normal) # path.nvector_normals() normal_c = intersect(path_a, path_b) # nvector depth = (point_a1.z + point_a2.z + point_b1.z + point_b2.z) / 4. return frame.Nvector(normal_c, z=depth) intersection = np.deprecate(intersect, old_name='intersection', new_name='intersect') def _on_ellipsoid_path(self, point, rtol=1e-6, atol=1e-8): point_a, point_b = self.geo_points() point_c = point.to_geo_point() z = (point_a.z + point_b.z) * 0.5 distance_ab, azimuth_ab, _azi_ba = point_a.distance_and_azimuth(point_b) distance_ac, azimuth_ac, _azi_ca = point_a.distance_and_azimuth(point_c) return (isclose(z, point_c.z, rtol=rtol, atol=atol) & (isclose(distance_ac, 0, atol=atol) | ((distance_ab >= distance_ac) & isclose(azimuth_ac, azimuth_ab, rtol=rtol, atol=atol)))) def on_great_circle(self, point, atol=1e-8): """Returns True if point is on the great circle within a tolerance.""" distance = np.abs(self.cross_track_distance(point)) result = isclose(distance, 0, atol=atol) if np.ndim(result) == 0: return result[()] return result def _on_great_circle_path(self, point, radius=None, rtol=1e-9, atol=1e-8): if radius is None: radius = self._get_average_radius() n_a, n_b = self.nvectors() path = (n_a.normal, n_b.normal) n_c = point.to_nvector() same_z = isclose(n_c.z, (n_a.z + n_b.z) * 0.5, rtol=rtol, atol=atol) result = on_great_circle_path(path, n_c.normal, radius, atol=atol) & same_z if np.ndim(radius) == 0 and result.size == 1: return result[0] # scalar outout return result def on_path(self, point, method='greatcircle', rtol=1e-6, atol=1e-8): """ Returns True if point is on the path between A and B witin a tolerance. Parameters ---------- point : Nvector, GeoPoint or ECEFvector point to test method: 'greatcircle' or 'ellipsoid' defining the path. Returns ------- result: Bool scalar or boolean vector True if the point is on the path at its average height. Notes ----- The result for spherical Earth is returned for method='greatcircle'. Examples -------- >>> import nvector as nv >>> wgs84 = nv.FrameE(name='WGS84') >>> pointA = wgs84.GeoPoint(89, 0, degrees=True) >>> pointB = wgs84.GeoPoint(80, 0, degrees=True) >>> path = nv.GeoPath(pointA, pointB) >>> pointC = path.interpolate(0.6).to_geo_point() >>> path.on_path(pointC) True >>> path.on_path(pointC, 'ellipsoid') True >>> pointD = path.interpolate(1.000000001).to_geo_point() >>> path.on_path(pointD) False >>> path.on_path(pointD, 'ellipsoid') False >>> pointE = wgs84.GeoPoint(85, 0.0001, degrees=True) >>> path.on_path(pointE) False >>> pointC = path.interpolate(-2).to_geo_point() >>> path.on_path(pointC) False >>> path.on_great_circle(pointC) True """ if method[:2] in {'ex', 'el'}: # exact or ellipsoid return self._on_ellipsoid_path(point, rtol=rtol, atol=atol) return self._on_great_circle_path(point, rtol=rtol, atol=atol) def _closest_point_on_great_circle(self, point): point_c = point.to_nvector() point_a, point_b = self.nvectors() path = (point_a.normal, point_b.normal) z = (point_a.z + point_b.z) * 0.5 normal_d = closest_point_on_great_circle(path, point_c.normal) return point_c.frame.Nvector(normal_d, z) def closest_point_on_great_circle(self, point): """ Returns closest point on great circle path to the point. Parameters ---------- point: GeoPoint point of intersection between paths Returns ------- closest_point: GeoPoint closest point on path. Notes ----- The result for spherical Earth is returned at the average depth. Examples -------- >>> import nvector as nv >>> wgs84 = nv.FrameE(name='WGS84') >>> point_a = wgs84.GeoPoint(51., 1., degrees=True) >>> point_b = wgs84.GeoPoint(51., 2., degrees=True) >>> point_c = wgs84.GeoPoint(51., 2.9, degrees=True) >>> path = nv.GeoPath(point_a, point_b) >>> point = path.closest_point_on_great_circle(point_c) >>> path.on_path(point) False >>> np.allclose((point.latitude_deg, point.longitude_deg), ... (50.99270338, 2.89977984)) True >>> np.allclose(GeoPath(point_c, point).track_distance(), 810.76312076) True """ point_d = self._closest_point_on_great_circle(point) return point_d.to_geo_point() def closest_point_on_path(self, point): """ Returns closest point on great circle path segment to the point. If the point is within the extent of the segment, the point returned is on the segment path otherwise, it is the closest endpoint defining the path segment. Parameters ---------- point: GeoPoint point of intersection between paths Returns ------- closest_point: GeoPoint closest point on path segment. Examples -------- >>> import nvector as nv >>> wgs84 = nv.FrameE(name='WGS84') >>> pointA = wgs84.GeoPoint(51., 1., degrees=True) >>> pointB = wgs84.GeoPoint(51., 2., degrees=True) >>> pointC = wgs84.GeoPoint(51., 1.9, degrees=True) >>> path = nv.GeoPath(pointA, pointB) >>> point = path.closest_point_on_path(pointC) >>> np.allclose((point.latitude_deg, point.longitude_deg), ... (51.00038411380564, 1.900003311624411)) True >>> np.allclose(GeoPath(pointC, point).track_distance(), 42.67368351) True >>> pointD = wgs84.GeoPoint(51.0, 2.1, degrees=True) >>> pointE = path.closest_point_on_path(pointD) # 51.0000, 002.0000 >>> pointE.latitude_deg, pointE.longitude_deg (51.0, 2.0) """ # TODO: vectorize this return self._closest_point_on_path(point) def _closest_point_on_path(self, point): point_c = self._closest_point_on_great_circle(point) if self.on_path(point_c): return point_c.to_geo_point() n0 = point.to_nvector().normal n1, n2 = self.nvector_normals() radius = self._get_average_radius() d1 = great_circle_distance(n1, n0, radius) d2 = great_circle_distance(n2, n0, radius) if d1 < d2: return self.point_a.to_geo_point() return self.point_b.to_geo_point() def interpolate(self, ti): """ Returns the interpolated point along the path Parameters ---------- ti: real scalar interpolation time assuming position A and B is at t0=0 and t1=1, respectively. Returns ------- point: Nvector point of interpolation along path """ point_a, point_b = self.nvectors() point_c = point_a + (point_b - point_a) * ti point_c.normal = unit(point_c.normal, norm_zero_vector=np.nan) return point_c
[docs]class FrameE(_Common): """ Earth-fixed frame Parameters ---------- a: real scalar, default WGS-84 ellipsoid. Semi-major axis of the Earth ellipsoid given in [m]. f: real scalar, default WGS-84 ellipsoid. Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical Earth with radius a is used in stead of WGS-84. name: string defining the default ellipsoid. axes: 'e' or 'E' defines axes orientation of E frame. Default is axes='e' which means that the orientation of the axis is such that: z-axis -> North Pole, x-axis -> Latitude=Longitude=0. Notes ----- The frame is Earth-fixed (rotates and moves with the Earth) where the origin coincides with Earth's centre (geometrical centre of ellipsoid model). See also -------- FrameN, FrameL, FrameB """ _NAMES = ('a', 'f', 'name', 'axes')
[docs] def __init__(self, a=None, f=None, name='WGS84', axes='e'): if a is None or f is None: a, f, _full_name = get_ellipsoid(name) self.a = a self.f = f self.name = name self.axes = axes
@property def R_Ee(self): """Rotation matrix R_Ee defining the axes of the coordinate frame E""" return E_rotation(self.axes) def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): return (allclose(self.a, other.a, rtol=rtol, atol=atol) and allclose(self.f, other.f, rtol=rtol, atol=atol) and allclose(self.R_Ee, other.R_Ee, rtol=rtol, atol=atol)) def inverse(self, lat_a, lon_a, lat_b, lon_b, z=0, long_unroll=False, degrees=False): """ Returns ellipsoidal distance between positions as well as the direction. Parameters ---------- lat_a, lon_a: real scalars or vectors. Latitude and longitude of position a. lat_b, lon_b: real scalars or vectors. Latitude and longitude of position b. z : real scalar or vector depth relative to Earth ellipsoid. long_unroll: bool Controls the treatment of longitude. If it is False then the lon_a and lon_b are both reduced to the range [-180, 180). If it is True, then lon_a is as given in the function call and (lon_b - lon_a) determines how many times and in what sense the geodesic has encircled the ellipsoid. degrees: bool angles are given in degrees if True otherwise in radians. Returns ------- s_ab: real scalar or vector ellipsoidal distance [m] between position A and B. azimuth_a, azimuth_b: real scalars or vectors. direction [rad or deg] of line at position A and B relative to North, respectively. Notes ----- Restriction on the parameters: * Latitudes must lie between -90 and 90 degrees. * Latitudes outside this range will be set to NaNs. * The flattening f should be between -1/50 and 1/50 inn order to retain full accuracy. References ---------- `C. F. F. Karney, Algorithms for geodesics, J. Geodesy 87(1), 43-55 (2013) <https://rdcu.be/cccgm>`_ `geographiclib <https://pypi.python.org/pypi/geographiclib>`_ """ if not degrees: lat_a, lon_a, lat_b, lon_b = deg(lat_a, lon_a, lat_b, lon_b) lat_a, lon_a, lat_b, lon_b, z = np.broadcast_arrays(lat_a, lon_a, lat_b, lon_b, z) fun = partial(self._inverse, outmask=self._outmask(long_unroll)) items = zip(*np.atleast_1d(lat_a, lon_a, lat_b, lon_b, z)) sab, azia, azib = np.transpose([fun(lat_ai, lon_ai, lat_bi, lon_bi, z=zi) for lat_ai, lon_ai, lat_bi, lon_bi, zi in items]) if not degrees: s_ab, azimuth_a, azimuth_b = sab.ravel(), rad(azia.ravel()), rad(azib.ravel()) else: s_ab, azimuth_a, azimuth_b = sab.ravel(), azia.ravel(), azib.ravel() if np.ndim(lat_a) == 0: return s_ab[0], azimuth_a[0], azimuth_b[0] return s_ab, azimuth_a, azimuth_b def _inverse(self, lat_a, lon_a, lat_b, lon_b, z=0, outmask=None): geo = _Geodesic(self.a - z, self.f) result = geo.Inverse(lat_a, lon_a, lat_b, lon_b, outmask=outmask) return result['s12'], result['azi1'], result['azi2'] @staticmethod def _outmask(long_unroll): if long_unroll: return _Geodesic.STANDARD | _Geodesic.LONG_UNROLL return _Geodesic.STANDARD def direct(self, lat_a, lon_a, azimuth, distance, z=0, long_unroll=False, degrees=False): """ Returns position B computed from position A, distance and azimuth. Parameters ---------- lat_a, lon_a: real scalars or vectors of length n. Latitude and longitude [rad or deg] of position A. azimuth: real scalar or vector of length n. azimuth [rad or deg] of line at position A relative to North. distance: real scalar or vector of length n. ellipsoidal distance [m] between position A and B. z: real scalar or vector of length n. depth relative to Earth ellipsoid. long_unroll: bool Controls the treatment of longitude. If it is False then the lon_a and lon_b are both reduced to the range [-180, 180). If it is True, then lon_a is as given in the function call and (lon_b - lon_a) determines how many times and in what sense the geodesic has encircled the ellipsoid. degrees: bool angles are given in degrees if True otherwise in radians. Returns ------- lat_b, lon_b: real scalars or vectors of length n Latitude and longitude of position b. azimuth_b: real scalar or vector of length n. azimuth [rad or deg] of line at position B relative to North. Notes ----- Restriction on the parameters: * Latitudes must lie between -90 and 90 degrees. * Latitudes outside this range will be set to NaNs. * The flattening f should be between -1/50 and 1/50 inn order to retain full accuracy. References ---------- `C. F. F. Karney, Algorithms for geodesics, J. Geodesy 87(1), 43-55 (2013) <https://rdcu.be/cccgm>`_ `geographiclib <https://pypi.python.org/pypi/geographiclib>`_ """ if not degrees: lat_a, lon_a, azimuth = deg(lat_a, lon_a, azimuth) broadcast = np.broadcast_arrays lat_a, lon_a, azimuth, distance, z = broadcast(lat_a, lon_a, azimuth, distance, z) fun = partial(self._direct, outmask=self._outmask(long_unroll)) items = zip(*np.atleast_1d(lat_a, lon_a, azimuth, distance, z)) lab, lob, azib = np.transpose([fun(lat_ai, lon_ai, azimuthi, distancei, z=zi) for lat_ai, lon_ai, azimuthi, distancei, zi in items]) if not degrees: latb, lonb, azimuth_b = rad(lab.ravel(), lob.ravel(), azib.ravel()) else: latb, lonb, azimuth_b = lab.ravel(), lob.ravel(), azib.ravel() if np.ndim(lat_a) == 0: return latb[0], lonb[0], azimuth_b[0] return latb, lonb, azimuth_b def _direct(self, lat_a, lon_a, azimuth, distance, z=0, outmask=None): geo = _Geodesic(self.a - z, self.f) result = geo.Direct(lat_a, lon_a, azimuth, distance, outmask=outmask) latb, lonb, azimuth_b = result['lat2'], result['lon2'], result['azi2'] return latb, lonb, azimuth_b @use_docstring_from(GeoPoint) def GeoPoint(self, *args, **kwds): "{super}" kwds.pop('frame', None) return GeoPoint(*args, frame=self, **kwds) @use_docstring_from(Nvector) def Nvector(self, *args, **kwds): "{super}" kwds.pop('frame', None) return Nvector(*args, frame=self, **kwds) @use_docstring_from(ECEFvector) def ECEFvector(self, *args, **kwds): "{super}" kwds.pop('frame', None) return ECEFvector(*args, frame=self, **kwds)
class _LocalFrame(_Common): def Pvector(self, pvector): """Returns Pvector relative to the local frame.""" return Pvector(pvector, frame=self)
[docs]@use_docstring(_examples.get_examples_no_header([1])) class FrameN(_LocalFrame): """ North-East-Down frame Parameters ---------- point: ECEFvector, GeoPoint or Nvector object position of the vehicle (B) which also defines the origin of the local frame N. The origin is directly beneath or above the vehicle (B), at Earth's surface (surface of ellipsoid model). Notes ----- The Cartesian frame is local and oriented North-East-Down, i.e., the x-axis points towards north, the y-axis points towards east (both are horizontal), and the z-axis is pointing down. When moving relative to the Earth, the frame rotates about its z-axis to allow the x-axis to always point towards north. When getting close to the poles this rotation rate will increase, being infinite at the poles. The poles are thus singularities and the direction of the x- and y-axes are not defined here. Hence, this coordinate frame is NOT SUITABLE for general calculations. Examples -------- {super} See also -------- FrameE, FrameL, FrameB """ _NAMES = ('point',)
[docs] def __init__(self, point): nvector = point.to_nvector() self.nvector = Nvector(nvector.normal, z=0, frame=nvector.frame)
@property def R_EN(self): """Rotation matrix to go between E and N frame""" nvector = self.nvector return n_E2R_EN(nvector.normal, nvector.frame.R_Ee) def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): return (allclose(self.R_EN, other.R_EN, rtol=rtol, atol=atol) and self.nvector == other.nvector)
[docs]class FrameL(FrameN): """ Local level, Wander azimuth frame Parameters ---------- point: ECEFvector, GeoPoint or Nvector object position of the vehicle (B) which also defines the origin of the local frame L. The origin is directly beneath or above the vehicle (B), at Earth's surface (surface of ellipsoid model). wander_azimuth: real scalar Angle [rad] between the x-axis of L and the north direction. Notes ----- The Cartesian frame is local and oriented Wander-azimuth-Down. This means that the z-axis is pointing down. Initially, the x-axis points towards north, and the y-axis points towards east, but as the vehicle moves they are not rotating about the z-axis (their angular velocity relative to the Earth has zero component along the z-axis). (Note: Any initial horizontal direction of the x- and y-axes is valid for L, but if the initial position is outside the poles, north and east are usually chosen for convenience.) The L-frame is equal to the N-frame except for the rotation about the z-axis, which is always zero for this frame (relative to E). Hence, at a given time, the only difference between the frames is an angle between the x-axis of L and the north direction; this angle is called the wander azimuth angle. The L-frame is well suited for general calculations, as it is non-singular. See also -------- FrameE, FrameN, FrameB """ _NAMES = ('point', 'wander_azimuth')
[docs] def __init__(self, point, wander_azimuth=0): super(FrameL, self).__init__(point) self.wander_azimuth = wander_azimuth
@property def R_EN(self): """Rotation matrix to go between E and L frame""" n_EA_E = self.nvector.normal R_Ee = self.nvector.frame.R_Ee return n_E_and_wa2R_EL(n_EA_E, self.wander_azimuth, R_Ee=R_Ee)
[docs]@use_docstring(_examples.get_examples_no_header([2])) class FrameB(_LocalFrame): """ Body frame Parameters ---------- point: ECEFvector, GeoPoint or Nvector object position of the vehicle's reference point which also coincides with the origin of the frame B. yaw, pitch, roll: real scalars defining the orientation of frame B in [deg] or [rad]. degrees : bool if True yaw, pitch, roll are given in degrees otherwise in radians Notes ----- The frame is fixed to the vehicle where the x-axis points forward, the y-axis to the right (starboard) and the z-axis in the vehicle's down direction. Examples -------- {super} See also -------- FrameE, FrameL, FrameN """ _NAMES = ('point', 'yaw', 'pitch', 'roll')
[docs] def __init__(self, point, yaw=0, pitch=0, roll=0, degrees=False): self.nvector = point.to_nvector() if degrees: yaw, pitch, roll = rad(yaw), rad(pitch), rad(roll) self.yaw = yaw self.pitch = pitch self.roll = roll
@property def R_EN(self): """Rotation matrix to go between E and B frame""" R_NB = zyx2R(self.yaw, self.pitch, self.roll) n_EB_E = self.nvector.normal R_EN = n_E2R_EN(n_EB_E, self.nvector.frame.R_Ee) return mdot(R_EN, R_NB) # rotation matrix def _is_equal_to(self, other, rtol=1e-12, atol=1e-14): return (allclose(self.yaw, other.yaw, rtol=rtol, atol=atol) and allclose(self.pitch, other.pitch, rtol=rtol, atol=atol) and allclose(self.roll, other.roll, rtol=rtol, atol=atol) and allclose(self.R_EN, other.R_EN, rtol=rtol, atol=atol) and self.nvector == other.nvector)
def _check_frames(self, other): if not self.frame == other.frame: raise ValueError('Frames are unequal') def _default_frame(frame): if frame is None: return FrameE() return frame _ODICT = globals() __doc__ = (__doc__ # @ReservedAssignment + _make_summary(dict((n, _ODICT[n]) for n in __all__)) + 'License\n-------\n' + _license.__doc__) if __name__ == "__main__": test_docstrings(__file__)